Article Sidebar
Abstract:
Background of study: Luteolin and its glycoside derivatives from natural sources possess potent anti-inflammatory and antioxidant properties, yet their multi-target mechanisms remain incompletely characterized.
Aims and scope of paper: This study aimed to systematically elucidate the multi-target pharmacological mechanisms of three luteolin glycoside compounds (Luteolin 7-apiosyl(1→6)glucoside, Luteolin 7-sambubioside, and Luteolin 7-primeveroside) extracted via NaDES technology using integrated network pharmacology approaches, focusing on identification of core therapeutic targets and pathways modulating inflammatory and oxidative stress responses.
Method: Comprehensive network pharmacology analysis was conducted through: (1) target prediction via TargetNet and Swiss Target Prediction platforms; (2) protein-protein interaction (PPI) network construction using STRING database; (3) disease-associated gene identification through GeneCards; (4) topological centrality analysis using Cytoscape with CytoNCA plugin. Hub proteins were prioritized based on degree, betweenness, and closeness centrality measures.
Result: Network analysis identified 40 predicted targets with 5-6 intersection genes per compound. Venn diagram analysis revealed TNF (Tumor Necrosis Factor-alpha) as the critical hub protein (degree centrality 3.0, betweenness centrality 7.0), establishing a TNF-XDH-CYP1A2-ALOX15 integrated regulatory axis. Luteolin 7-apiosyl(1→6)glucoside and Luteolin 7-primeveroside demonstrated highest potency with 6 intersection targets, while Luteolin 7-sambubioside exhibited selective oxidative stress pathway.
Conclusion: Network pharmacology analysis successfully elucidated the integrated TNF-XDH-CYP1A2-ALOX15 axis as a core mechanism through which luteolin glycosides coordinately modulate inflammatory and oxidative stress pathways. These findings provide mechanistic validation for therapeutic potential in chronic inflammatory diseases including inflammatory bowel disease, type 2 diabetes, and cardiovascular disorders. Future experimental validation is essential to translate these predictions into clinical therapeutic applications.
Keywords: Celery, Luteolin, Multi-target mechanisms, Network pharmacology, Oxidative stress
Copyright (c) 2025 Andzely Zahana Putri, Indri Meirista, Hendri Satria Kamal Uyun, rizky yulion

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Arús-pous, J., Awale, M., Probst, D., & Reymond, J. (2019). Exploring Chemical Space with Machine Learning. ArtificiAl Intelligence in SwiSS ChemicAl ReSeArch, 73(12), 1018–1023. https://doi.org/10.2533/chimia.2019.1018
Barabási, A., Gulbahce, N., & Loscalzo, J. (2011). Network medicine : a network-based approach to human disease. Macmillan Publishers, 12(January). https://doi.org/10.1038/nrg2918
Batada, N. N., Hurst, L. D., & Tyers, M. (2006). Evolutionary and Physiological Importance of Hub Proteins. Computational Biologi, 2(7), 748–756. https://doi.org/10.1371/journal.pcbi.0020088
Battelli, M. G., Polito, L., Bortolotti, M., & Bolognesi, A. (2016). Xanthine Oxidoreductase-Derived Reactive Species : Physiological and Pathological Effects. Oxidative Medicine and Cellular Longevity, 8, 1–8. https://doi.org/10.1155/2016/3527579
Carpenter, K. A., & Huang, X. (2018). Machine Learning-based Virtual Screening and Its Applications to Alzheimer’s Drug Discovery: A Review. Current Pharmaceutical Design, 24, 3347–3358. https://doi.org/10.2174/1381612824666180607124038
Claudine, M., Gary, W., Christine, M., Augustin, S., & Christian, R. (2005). Bioavailability and bioefficacy of polyphenols in humans . I . Review of 97 bioavailability studies 1 – 3. The American Journal of Clinical Nutrition, 81(1), 230S-242S. https://doi.org/10.1093/ajcn/81.1.230S
Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction : updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47, 357–364. https://doi.org/10.1093/nar/gkz382
Doncheva, N. T., Morris, J., Gorodkin, J., & Jensen, L. J. (2018). Cytoscape stringApp : Network analysis and visualization of proteomics data. Journal of Proteome Research, 1–27. https://doi.org/10.1021/acs.jproteome.8b00702
Droge, W. (2025). Free Radicals in the Physiological Control of Cell Function. Physiological Review, 82(2), 47–95. https://doi.org/https://doi.org/10.1152/physrev.00018.2001
Fourches, D., Muratov, E., & Tropsha, A. (2010). Trust , But Verify : On the Importance of Chemical Structure Curation in Cheminformatics and QSAR Modeling Research. Perspective, 50(7). https://doi.org/10.1021/ci100176x
Frangogiannis, N. G. (2015a). Pathophysiology of Myocardial Infarction. Comprehensve Physiology, 5, 1841–1875. https://doi.org/10.1002/cphy.c150006
Fredman, G., Spite, M., & Injury, R. (2018). HHS Public Access. HHS Public Access, 58, 65–71. https://doi.org/10.1016/j.mam.2017.02.003.Specialized
Frerman, lINTON C. (1977). A Set of Measures of Centrality Based on Betweenne. Sociometri, 40(1), 35–41. https://doi.org/https://doi.org/10.2307/3033543
Hopkins, A. L., Mason, J. S., & Overington, J. P. (2006). Can we rationally design promiscuous drugs ? Current Opinion in Structural Biology, 16, 127–136. https://doi.org/10.1016/j.sbi.2006.01.013
Iersel, M. P. Van, Kelder, T., Pico, A. R., Hanspers, K., Coort, S., Conklin, B. R., & Evelo, C. (2008). Presenting and exploring biological pathways with PathVisio. BMC Bioinformatics, 9, 1–9. https://doi.org/10.1186/1471-2105-9-399
Jiang, J., Zhu, F., Zhang, H., Sun, T., Fu, F., Chen, X., & Zhang, Y. (2022). Luteolin suppresses the growth of colon cancer cells by inhibiting the IL-6 / STAT3 signaling pathway. Journal of Gastrointestinal Oncology, 6(4), 1722–1732. https://doi.org/10.21037/jgo-22-507
Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., & Morishima, K. (2017). KEGG : new perspectives on genomes , pathways , diseases and drugs. Nucleic Acids Research, 45(November 2016), 353–361. https://doi.org/10.1093/nar/gkw1092
Kanehisa, M., Goto, S., Sato, Y., & Kawashima, M. (2014). Data , information , knowledge and principle : back to metabolism in KEGG. Nucleic Acids Research, 42, 199–205. https://doi.org/10.1093/nar/gkt1076
Kim, H. K., Cheon, B. S., Kim, Y. H., Kim, S. Y., & Kim, H. P. (1999). Effects of Naturally Occurring Flavonoids on Nitric Oxide Production in the Macrophage Cell Line RAW 264 . 7 and Their Structure – Activity Relationships. Biochemical Pharmacology, 58(99), 759–765. https://doi.org/https://doi.org/10.1016/S0006-2952(99)00160-4
Kim, Y., & Stanley, D. (2021). Eicosanoid Signaling in Insect Immunology : New Genes and Unresolved Issues. Genes. https://doi.org/https://doi.org/10.3390/genes12020211
Konishi, Y., Zhao, Z., & Shimizu, M. (2006). Phenolic Acids Are Absorbed from the Rat Stomach with Different Absorption Rates. Journal of Agricultural and Food Chemistry, 54, 7539–7543. https://doi.org/https://doi.org/10.1021/jf061554+
Kuhn, H., Banthiya, S., & Leyen, K. Van. (2015). HHS Public Access. Biochim Biophys Acta, 1851(4), 308–330. https://doi.org/10.1016/j.bbalip.2014.10.002.Mammalian
Locksley, R. M., Killeen, N., Lenardo, M. J., Francisco, S., & Francisco, S. (2001). The TNF and TNF Receptor Superfamilies : Integrating Mammalian Biology. Cell Press, 104, 487–501. https://doi.org/https://doi.org/10.1016/s0092-8674(01)00237-9
Lv, J., Song, X., Luo, Z., Huang, D., & Xiao, L. (2025). Luteolin : exploring its therapeutic potential and molecular mechanisms in pulmonary diseases. Frontirers in Pharmacology, February, 1–19. https://doi.org/10.3389/fphar.2025.1535555
Nebert, D. W., Wikvall, K., Miller, W. L., & Nebert, D. W. (2013). Human cytochromes P450 in health and disease. Philosophical Transaction of the Royal Society, August 2012. https://doi.org/http://dx.doi.org/10.1098/rstb.2012.0431
Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R. L., & Duarte, A. R. C. (2014). Natural Deep Eutectic Solvents − Solvents for the 21st Century. Sustainable Chemistry & Engineering, 2(5). https://doi.org/https://doi.org/10.1021/sc500096j
Putra, R. Y., Mariska, R. P., Ningrum, P., & Latifah, N. (2024). Ultrasonic NaDES-based optimization of luteolin extraction technology from celery (Apium graveolens) for improved drug raw material independence. Riset Informasi Kesehatan, 13(2), 134–143. https://doi.org/10.30644/rik.v13i2.906
Rao, V. S., Srinivas, K., Sujini, G. N., & Kumar, G. N. S. (2014). Protein-Protein Interaction Detection : Methods and Analysis. International Journal of Proteomics, 2. https://doi.org/10.1155/2014/147648
Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31(4), 581–603. https://doi.org/https://doi.org/10.1007/BF02289527
Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., Stein, T. I., Nudel, R., Lieder, I., Mazor, Y., Kaplan, S., Dahary, D., Warshawsky, D., Guan-golan, Y., Kohn, A., Rappaport, N., & Safran, M. (2016). The GeneCards Suite : From Gene Data Mining to Disease Genome Sequence Analyses. Bioinformatics, 1–33. https://doi.org/10.1002/cpbi.5
Tang, Y., Li, M., Wang, J., Pan, Y., & Wu, F. (2015). BioSystems CytoNCA : A cytoscape plugin for centrality analysis and evaluation of protein interaction networks. BioSystems, 127, 67–72. https://doi.org/10.1016/j.biosystems.2014.11.005
Venn, J. (2013). Philosophical Magazine Series 5 I . On the diagrammatic and mechanical representation of propositions and reasonings. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 59(9), 37–41. https://doi.org/10.1080/14786448008626877
Yu, Z., Ding, R., Yan, Q., Cheng, M., & Li, T. (2024). A Novel Network Pharmacology Strategy Based on the Universal Effectiveness-Common Mechanism of Medical Herbs Uncovers Therapeutic Targets in Traumatic Brain Injury. Drug Design, Development and Therapy, April, 1175–1188. https://doi.org/10.2147/DDDT.S450895
Zhang, G., Li, Q., Chen, Q., & Su, S. (2013). Network Pharmacology : A New Approach for Chinese Herbal Medicine Research. Evidence-Based Complementary and Alternative Medicine, 9. https://doi.org/http://dx.doi.org/10.1155/2013/621423