Article Sidebar
Abstract:
Background of study: Antimicrobial resistance (AMR) has emerged as a critical global health threat, diminishing the efficacy of existing antibiotics and complicating the management of infectious diseases. Medicinal plants remain an invaluable source of new antimicrobial agents. The Fabaceae family is abundantly represented across Northern Nigeria and forms a cornerstone of ethnomedicine for treating bacterial and fungal infections. However, scientific evidence on their antimicrobial activities remains fragmented.
Aim and scope of paper: This systematic review synthesizes evidence (2018–2025) on the antimicrobial activities of selected Fabaceae species found in Northern Nigeria.
Methods: Using PRISMA 2020 guidelines, electronic searches were conducted in PubMed, Scopus, Web of Science, Google Scholar, ScienceDirect, AJOL, and SpringerLink. Peer-reviewed experimental studies evaluating antimicrobial activities of Fabaceae plants native to or present in Northern Nigeria were included. Data were narratively synthesized due to methodological heterogeneity.
Results: Thirty eligible studies were identified, covering Parkia biglobosa, Tamarindus indica, Acacia senegal, Acacia nilotica, Prosopis juliflora, Senna alata, Erythrina senegalensis, Tephrosia vogelii, Cassia fistula, Pterocarpus erinaceus, Pterocarpus tinctorius, and Bauhinia species. Extracts especially methanolic and ethanolic showed significant antibacterial and antifungal activities, with inhibition zones ranging from 12–30 mm and minimum inhibitory concentrations (MICs) between 0.25–4 mg/mL. Some species exhibit exhibits and virulence-attenuating effects.
Conclusion: Fabaceae plants in Northern Nigeria demonstrate substantial antimicrobial potential and warrant deeper investigation for drug development. Future research should focus on bioactive compound isolation, mechanistic elucidation, toxicity assessment, and in vivo validation.
Keywords: Antimicrobial Activity, Fabaceae, Medicinal Plants, Northern Nigeria, Phytochemicals
Copyright (c) 2025 Mujahid Musa, Abubakar Aji

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Ajiboye, A. E., & Hammed, B. A. (2020). Antimicrobial activity of the crude extracts of Parkia biglobosa (Jacq) seeds on selected clinical isolat. Journal of Biological Research & Biotechnology Bio-Research, 18(2), 1135–1146. https://doi.org/https://dx.doi.org/10.4314/br.v18i2.2
Akanni, I. O., Onaolapo, J. A., Bolaji, R. O., Danmalam, H. U., & Udobi, C. E. (2024). Antibacterial and antibiofilm activities of aqueous fraction of methanol extract from stem-bark of Parkia biglobosa against chronic wounds’ pathogens. Nigerian Journal of Pharmaceutical and Applied Science Research (NIJOPHASR), 13(3). https://doi.org/https://doi.org/10.60787/nijophasr-v13-i2-551
Aly, S. H., El-Hassab, M. A., Elhady, S. S., & Gad, H. A. (2023). Comparative Metabolic Study of Tamarindus indica L.’s Various Organs Based on GC/MS Analysis, In Silico and In Vitro Anti-Inflammatory and Wound Healing Activities. Plants, 12(87), 1–22. https://doi.org/https://doi.org/10.3390/plants12010087
Chaerunisaa, A. Y., Susilawati, Y., Muhaimin, M., & Milanda, T. (2020). Antibacterial activity and subchronic toxicity of Cassia fi stula L . barks in rats. Toxicology Reports, 7, 649–657. https://doi.org/10.1016/j.toxrep.2020.04.013
Eboma, R. N., Ogidi, C. O., & Akinyele, B. J. (2020). Bioactive compounds and antimicrobial activity of extracts from fermented African locust bean ( Parkia biglobosa ) against pathogenic microorganisms. 4(8), 343–350. https://doi.org/https://doi.org/10.51745/najfnr.4.8.343-350
Enoma, S., Adewole, T. S., Agunbiade, T. O., & Kuku, A. (2023). Antimicrobial activities and phylogenetic study of Erythrina senegalensis DC ( Fabaceae ) seed lectin. Journal of Biotechnology, Computational Biology and Bionanotechnology, 104(1), 21–32. https://doi.org/https://doi.org/10.5114/bta.2023.125083
Enupe, O. J., Umar, C. M., Philip, M., Musa, E., Oti, V. B., & Khaliq, A. (2024). Evaluation of the Antibacterial and Antibiofilm Activity of Erythrina senegalensis Leaf Extract Against Multidrug- Resistant Bacteria. Acta Microbiologica Hellenica, 69, 258–273. https://doi.org/https://doi.org/10.3390/amh69040024
Ghaly, M. F., Albalawi, M. A., Bendary, M. M., Shahin, A., Shaheen, M. A., Eleneen, A. F. A., Ghoneim, M. M., Elmaaty, A. A., Elrefai, M. F. M., Zaitone, S. A., & Abousaty, A. I. (2023). Tamarindus indica Extract as a Promising Antimicrobial and Antivirulence Therapy. Antibiotics, 12, 1–14. https://doi.org/https://doi.org/10.3390/antibiotics12030464
Goanar, G., Tafesse, G., & Fereja, W. M. (2024). In vitro antibacterial activity of fruit pulp extracts of Tamarindus indica against Staphylococcus aureus and Klebsiella pneumoniae. BMC Complementary Medicine and Therapies, 6, 1–7. https://doi.org/10.1186/s12906-024-04404-6
Halilu, E. M., MU, U., Ovenseri, A. C., Jude, I. E., & Johnbull, O. A. (2022). Influence of carnauba wax on the release profile of ibuprofen implants. EMUJPharmSci, 4(2), 45–56. https://doi.org/10.54994/emujpharmsci.986291
Idrees, M., Javaid, S., Nadeem, S., Khurshid, F., & Parveen, A. (2024). Antimicrobial and Hepatoprotective Properties of Pods of Acacia nilotica ( L .) Willd . ex Delile : In Vivo and In Silico Approaches. Dose Response, December, 1–14. https://doi.org/10.1177/15593258241308998
Idriss, M. M., Sehgal, A., Sama’ila, Jovial, A., M.M, F., & A.N, S. (2023). An In Vitro Antimicrobial Activity of Acacia Senegal as Prebiotic against Pathogens. Journal of Health, Wellness & Safety Research, 2(2), 1–15. https://doi.org/10.70382/bejhmns
Kuma, D. N., Boye, A., Kwakye-nuako, G., Boakye, Y. D., Addo, J. K., Asiamah, E. A., Aboagye, E. A., Martey, O., Essuman, M. A., Yao, V., & Barku, A. (2022). Wound Healing Properties and Antimicrobial Effects of Parkia clappertoniana Keay Fruit Husk Extract in a Rat Excisional Wound Model. BioMed Research International, 1–18. https://doi.org/https://doi.org/10.1155/2022/9709365
Limboo, K. H., & Singh, B. (2019). Antibiotic potentiating e ect of Bauhinia purpurea L . against multidrug resistant Staphylococcus aureus. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2024.1385268
Ma, J., Ho, E., Omosun, G., & Nduche, M. U. (2019). The Antibacterial Activity of Ethanolic Leaf Extracts of Six Senna Species. 87–92. https://doi.org/10.21276/haya.2019.4.2.5
Magnini, R. D., Hilou, A., Koné, M. H., Pagès, J.-M., & Davin-Regli, A. (2020). Acacia senegal Extract Rejuvenates the Activity of Phenicols on Selected Enterobacteriaceae Multi Drug. Antibiotics, 9(6), 1–15. https://doi.org/https://doi.org/10.3390/antibiotics9060323
Magnini, R. D., Nitiéma, M., Ouédraogo, G. G., Ilboudo, S., Bancé, A., Millogo-koné, H., Giorgio, C. Di, Pagès, J., Hilou, A., & Davin-regli, A. (2021). Toxicity and bacterial anti-motility activities of the hydroethanolic extract of Acacia senegal ( L .) Willd ( Fabaceae ) leaves. BMC Complementary Medicine and Therapies, 21(178), 1–12. https://doi.org/https://doi.org/10.1186/s12906-021-03348-5
Mlozi, S. H., Mmongoyo, J. A., & Chacha, M. (2020a). Antimicrobial activities of Tephrosia vogelii against selected pathogenic fungi and bacteria strains. Mycology, 11(1), 49–55. https://doi.org/10.1080/21501203.2019.1705929
Mlozi, S. H., Mmongoyo, J. A., & Chacha, M. (2020b). The in vivo toxicity evaluation of leaf and root methanolic extracts of Tephrosia vogelii Hook . f using animal model. Clinical Phytoscience, 6(73), 1–9. https://doi.org/https://doi.org/10.1186/s40816-020-00216-6
Mphande, I., Kataba, A., Muzandu, K., & Gono-bwalya, A. (2022). An Evaluation of the Antibacterial Activity of Pterocarpus tinctorius Bark Extract against Enteric Bacteria That Cause Gastroenteritis. Evidence-Based Complementary and Alternative Medicine, 22(1). https://doi.org/10.1155/2022/7973942
Naik, N. M., Krishnaveni, M., Mahadevswamy, M., Bheemanna, M., Nidoni, U., Kumar, V., & Tejashri, K. (2023). Characterization of phyto ‑ components with antimicrobial traits in supercritical carbon dioxide and soxhlet Prosopis juliflora leaves extract using GC ‑ MS. Scientific Reports, 13(4063), 1–9. https://doi.org/10.1038/s41598-023-30390-9
Oladeji, O. S., Adelowo, F. E., Oluyori, A. P., & Bankole, D. T. (2020). Ethnobotanical Description and Biological Activities of Senna alata. Evidence-Based Complementary and Alternative Medicine, 20(1), 1–11. https://doi.org/10.1155/2020/2580259
Page, M. J., Mckenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-wilson, E., Mcdonald, S., … Moher, D. (2021). The PRISMA 2020 statement : an updated guideline for reporting systematic reviews. Research Methods And Reporting, 372(71). https://doi.org/10.1136/bmj.n71
Saleh, I., & Dieyeh, M. H. A. (2021). Novel Prosopis juliflora leaf ethanolic extract as natural antimicrobial agent against food spoiling microorganisms. Scientific Reports, 7871, 1–17. https://doi.org/10.1038/s41598-021-86509-3
Sharifi-rad, J., Kobarfard, F., Ata, A., Ayatollahi, S. A., Matthews, K. R., & Popovi, J. (2019). Prosopis Plant Chemical Composition and Pharmacological Attributes : Targeting Clinical Studies from Preclinical Evidence. Biomolecules, 9(12). https://doi.org/https://www.mdpi.com/2218-273X/9/12/777
Singh, N., Mishra, S. K., & Dubey, S. (2024). Analysis of Antioxidant and Antibacterial properties of Bauhinia variegata and Sarcostemma acidum through scavenging process. Annals of Plant and Soil Research, 26(2), 333–340. https://doi.org/10.47815/apsr.2024.10368
Taher, M. A., Laboni, A. A., Islam, M. A., Hasnat, H., Hasan, M. M., Ferdous, J., Shompa, S. A., & Khan, M. (2024). Isolation , characterization and pharmacological potentials of methanol extract of Cassia fistula leaves : Evidenced from mice model along with molecular docking analysis. Heliyon, 10(7), e28460. https://doi.org/10.1016/j.heliyon.2024.e28460
Tariq, M., Ahmad, N., Un, M., Muhammad, N., Rahim, A., & Zongo, E. (2024). Phytochemicals profiling of Cassia fistula fruit extract and its effect on serum lipids and hematological parameters in high- fat induced hyperlipidemic female rats. Food Science & Nutrition, 12(8), 5776–5784. https://doi.org/10.1002/fsn3.4229
Tittikpina, N. K., Nana, F., Fontanay, S., Chaimbault, P., Jacob, C., & Emmanuel, R. (2018). Antibacterial activity and cytotoxicity of Pterocarpus erinaceus Poir extracts , fractions and isolated compounds. Journal of Ethnopharmacology Journal, 212(April 2017), 200–207. https://doi.org/10.1016/j.jep.2017.10.020
Toh, S. C., Lihan, S., Bunya, S. R., & Leong, S. S. (2023). In vitro antimicrobial efficacy of Cassia alata ( Linn .) leaves , stem , and root extracts against cellulitis causative agent Staphylococcus aureus. BMC Complementary Medicine and Therapies, 28(85), 1–17. https://doi.org/10.1186/s12906-023-03914-z