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Background of study: Luteolin and its glycoside derivatives from natural sources 
possess potent anti-inflammatory and antioxidant properties, yet their multi-target 
mechanisms remain incompletely characterized. 
Aims and scope of paper: This study aimed to systematically elucidate the multi-
target pharmacological mechanisms of three luteolin glycoside compounds 
(Luteolin 7-apiosyl(1→6)glucoside, Luteolin 7-sambubioside, and Luteolin 7-
primeveroside) extracted via NaDES technology using integrated network 
pharmacology approaches, focusing on identification of core therapeutic targets 
and pathways modulating inflammatory and oxidative stress responses. 
Method: Comprehensive network pharmacology analysis was conducted through: 
(1) target prediction via TargetNet and Swiss Target Prediction platforms; (2) 
protein-protein interaction (PPI) network construction using STRING database; (3) 
disease-associated gene identification through GeneCards; (4) topological 
centrality analysis using Cytoscape with CytoNCA plugin. Hub proteins were 
prioritized based on degree, betweenness, and closeness centrality measures. 
Result: Network analysis identified 40 predicted targets with 5-6 intersection 
genes per compound. Venn diagram analysis revealed TNF (Tumor Necrosis Factor-
alpha) as the critical hub protein (degree centrality 3.0, betweenness centrality 
7.0), establishing a TNF-XDH-CYP1A2-ALOX15 integrated regulatory axis. Luteolin 
7-apiosyl(1→6)glucoside and Luteolin 7-primeveroside demonstrated highest 
potency with 6 intersection targets, while Luteolin 7-sambubioside exhibited 
selective oxidative stress pathway. 
Conclusion: Network pharmacology analysis successfully elucidated the 
integrated TNF-XDH-CYP1A2-ALOX15 axis as a core mechanism through which 
luteolin glycosides coordinately modulate inflammatory and oxidative stress 
pathways. These findings provide mechanistic validation for therapeutic potential 
in chronic inflammatory diseases including inflammatory bowel disease, type 2 
diabetes, and cardiovascular disorders. Future experimental validation is essential 
to translate these predictions into clinical therapeutic applications. 
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INTRODUCTION 

The development of modern pharmaceutical science has undergone a paradigmatic 
transformation with the integration of computational and bioinformatics approaches in drug 
discovery and development strategies. The computational approach allows for the targeted and 
efficient identification, validation, and optimization of bioactive compounds, thereby reducing the 
time and cost in the drug discovery process. Environmentally friendly natural solvents such as 
Natural Deep Eutectic Solvent (NaDES) have been shown to increase the effective extraction of 
bioactive components from natural materials without the use of harmful organic solvents (Paiva et 
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al., 2014). Luteolin compounds found in celery plants (Apium graveolens), especially through 
extraction using NaDES, are the main focus of this study due to their potential as a multitarget 
therapeutic agent. The three luteolin compounds studied in depth include Luteolin 7-apiosyl(1-
6)glucoside, Luteolin 7-primeveroside, Luteolin 7-sambubioside (Putra et al., 2024), all of which 
show promising bioactive profiles based on structural analysis and previous computational 
pharmacological studies. 

Although there have been a number of studies that have explored the biological activity of 
luteolin compounds from various natural sources, integrated studies use a network pharmacology 
approach with a specific focus on Luteolin 7-apiosyl(1-6)glucoside, Luteolin 7-primeveroside, 
Luteolin 7-sambubioside. In-depth analysis of the multi-target relationships, molecular interaction 
mechanisms, and signaling pathways activated by the three compounds in the context of the network 
pharmacology ecosystem still requires further exploration. Most previous studies have focused on 
single-target mechanisms or limited biological effects, while a holistic understanding of the 
polypharmacology profile of specific luteolin compounds has not been comprehensively uncovered. 
This knowledge gap creates an urgent need to conduct a systematic analysis that integrates network 
pharmacology with bioinformatics validation, so as to provide new insights into the mechanisms of 
bioactivity and broader therapeutic potential. 

The network pharmacology approach offers a unique advantage in systematically and holistically 
mapping the complex relationships between bioactive compounds, molecular targets, and 
pathophysiological signaling pathways. This methodology allows the identification of core targets, 
hub genes, and key pathways involved in multifactorial mechanisms of action, thereby providing a 
deeper understanding of the pharmacodynamics profile (Zhang et al., 2013; Yu et al., 2024). By 
focusing the research on specific luteolin compounds obtained from NaDES extraction in celery, this 
investigation aims to uncover the comprehensive bioactive profiles and integral molecular pathways 
involved in the mechanisms of action of the three compounds. This approach also allows the 
identification of synergistic interactions between compounds and the prediction of pharmacokinetic 
effects based on computational screening, providing a solid scientific basis for the development of 
effective, safe, and rational, evidence-based therapeutic formulations for future clinical applications. 

The main hypothesis in this study is that the compounds Luteolin 7-apiosyl(1-6)glucoside, 
Luteolin 7-primeveroside, Luteolin 7-sambubioside have significant bioactive potential with a broad 
multitarget profile, as predicted through a comprehensive network pharmacology analysis. These 
three compounds are postulated to have the ability to interact with multiple therapeutic targets and 
activate various signaling pathways relevant to disease pathogenesis, thus offering opportunities for 
more effective and personalized therapeutic interventions.  
 

METHOD 

Study Design and Research Framework 
This study used a comprehensive network pharmacology approach to identify molecular targets, 

multi-target mechanisms of action, and biological pathways of the compounds Luteolin 7-apiosyl(1-
6)glucoside, Luteolin 7-primeveroside, Luteolin 7-sambubioside extracted from celery (Apium 
graveolens) using Natural Deep Eutectic Solvent (NaDES). This study is an in silico computational 
study designed following the standard methodology of network pharmacology with the integration 
of multiple computational platforms and databases (Zhang et al., 2013; Hopkins et al., 2006). 
 
Chemical Structure Data Acquisition of Compounds 

The chemical structure data of the three luteolin compounds studied was obtained from the 
PubChem database (https://pubchem.ncbi.nlm.nih.gov/) to obtain the canonical SMILES (Simplified 
Molecular Input Line Entry System) notation and the PubChem Compound Identifier (CID). SMILES 
is a universally accepted molecular linear representation in computational chemistry for the 
description of chemical structure and facilitates in silico analysis (Kim et al., 1999; Arús-pous et al., 
2019). The SMILES structural data of each compound is organized in a spreadsheet for use as input 
in the prediction target stage. Each compound is verified through multiple platforms to ensure the 
accuracy of the structure data before proceeding to target prediction analysis (Fourches et al., 2010). 
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Target Prediction via TargetNet Platform 
Target prediction for the three luteolin compounds was carried out using the TargetNet 

(http://targetnet.scbdd.com/calcnet/index/) platform which uses machine learning-based 
computational methods to predict target proteins in a high-throughput manner. Each SMILES 
compound notation is submitted to the TargetNet database by setting a probability threshold to 
identify the predicted targets with the highest probability score (probability > 0.6). The target 
prediction results were set at 100 records per page for comprehensive data collection, and the target 
proteins with the highest probability (optimal in the range of 0.8-1.0) were prioritized for follow-up 
analysis (Carpenter & Huang, 2018).  

All protein targets identified from TargetNet are then mapped using the STRING database 
(https://string-db.org/) to validate protein nomenclature and ensure that each target protein has a 
unique identifier in the STRING. The mapping was done by selecting "Homo sapiens" organisms to 
ensure a focus on clinically relevant human proteins. Protein data that did not have a recognized 
STRING identifier were removed from the dataset to maintain the quality of the data and the accuracy 
of subsequent analysis (Kanehisa et al., 2014; Kanehisa et al., 2017). 
 
Target Prediction via Swiss Target Prediction Platform 

Swiss Target Prediction (https://swisstargetprediction.ch/index.php) It is a probabilistic-based 
machine learning platform developed from integrated proteome data and validated against 
experimental binding assays. Each canonical SMILES compound is input into the Swiss Target 
Prediction with the specification of the filter organism "Homo sapiens" to obtain target predictions 
relevant to human physiology. The prediction results with the highest probability (top 5 targets with 
the highest probability) were selected for analysis, prioritizing targets with strong affinity binding 
(probability threshold ≥ 0.6) (Daina et al., 2019). Each target protein from the Swiss Target 
Prediction is validated through STRING database mapping with the same procedure as in Step 2A to 
ensure nomenclature consistency and identifier accuracy. Data cleansing is done by removing 
unidentified target proteins or lack recognized protein annotations in the STRING database 
(Kanehisa et al., 2017). 
 
Disease-Associated Gene Identification via GeneCards Database 

To identify target genes associated with biological processes related to oxidative stress and 
antioxidant mechanisms (primary focus in this study), GeneCards (https://www.genecards.org/) 
was used as a comprehensive human gene annotation database. Searches were conducted with 
keywords such as "OXIDATIVE STRESS" and "ANTIOXIDANT" to obtain comprehensive gene lists. 
Search results are filtered using GeneCards' built-in filtering options with the categories "Protein 
Coding Genes" and "show 5000 results" to maximize gene discovery (Stelzer et al., 2016). All gene 
symbols from the GeneCards search results are collected and validated through the STRING database 
with multiple protein query feature to ensure each gene has a corresponding protein in the STRING 
database. Data normalization is performed by deleting duplicate entries and genes that are not 
identified in the STRING, resulting in a curated list of disease-associated genes with high confidence 
(Kanehisa et al., 2017). 
 
Integration and Data Consolidation 

All target proteins from all three sources (TargetNet, Swiss Target Prediction, and GeneCards) 
are combined in a unified spreadsheet with columns for: (1) Compound name, (2) Target protein 
name, (3) Source website, and (4) Combined protein list containing merged targets from all 
prediction methods. For each compound, target proteins from TargetNet and Swiss Target Prediction 
were consolidated to identify common targets predicted by multiple platforms, indicating higher 
confidence in target prediction and reducing false positive predictions (Zhang et al., 2013). 
 
Venn Diagram Analysis and Hub Gene Identification 

To visualize the overlap between predicted compound targets and disease-associated genes, 
Venn diagram analysis was performed using the Bioinformatics & Evolutionary Genomics web tool 
(http://bioinformatics.psb.ugent.be/webtools/Venn/). A two-way Venn diagram is created with: 
List 1 (disease-associated genes from GeneCards) and List 2 (compound targets from prediction 
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methods), to identify intersection genes that represent potential therapeutic targets that are relevant 
to both compound and disease. The results of the Venn diagram analysis yielded: (1) unique disease-
associated genes, (2) unique compound targets, and (3) overlapping genes that became the focus in 
pathway enrichment and subsequent functional analysis (Venn, 2013; Iersel et al., 2008). 

Hub proteins (core proteins with degree connectivity highest in the network) identified from 
intersection genes to be prioritized in molecular docking studies. Hub gene selection is based on: (1) 
degree centrality (number of connections), (2) betweenness centrality (importance in information 
flow), and (3) closeness centrality (proximity in the network) using topological analysis (Barabási et 
al., 2011). 
 
Protein-Protein Interaction Network Construction 

The protein-protein interaction (PPI) network was built using the STRING database 
(https://string-db.org/) to analyze functional associations and predicted interactions between 
target proteins. STRING mapping was performed for all intersection genes from Venn analysis with 
a confidence score threshold of 0.4 (medium confidence level) to ensure inclusion of both 
experimentally validated and predicted interactions (Kanehisa et al., 2017). Network data is 
exported in TSV (Tab-Separated Values) format for visualization and topological analysis. The PPI 
network was visualized and analyzed using Cytoscape v3.7.2 (http://www.cytoscape.org/), an open-
source software platform for network visualization and integration of molecular interaction data. 
Network layout is carried out using a force-directed layout algorithm for optimal spatial 
representation of the network topology. The PPI network file from STRING is imported into 
Cytoscape as raw interaction data, and then processed for topological centrality analysis (Doncheva 
et al., 2018).  
 
Topological Analysis and Hub Gene Identification via Cytoscape  

To identify the hub genes (high-impact nodes in the network) that represent key regulatory 
points in biological networks, topological centrality measures are calculated using the Cytoscape 
plugin CytoNCA (Cytoscape Network Centrality Analysis). Three centrality measures are calculated 
for each node in the network: Degree Centrality (DC): Measures the number of direct connections of 
a node in the network, with the interpretation that nodes with high degrees are gene hubs that 
interact with many other proteins. Degree centrality provides the first indication of the local 
importance of a protein in the network topology. Betweenness Centrality (BC): Measures how often 
a node serves as a bridge in the shortest paths between other node pairs. The highest centrality 
indicates proteins that are essential for information flow and signaling integration in the network, 
thus becoming candidate strategic targets for therapeutic intervention (Frerman, 1977). Closeness 
Centrality (CC): Measures the average distance of a node to all other nodes in the network, with the 
interpretation that nodes with high closeness have efficient communication with the majority of 
nodes in the network. High closeness centrality indicates proteins that can be effectively influenced 
or be influenced by many other proteins (Sabidussi, 1966; Batada et al., 2006). Hub genes were 
identified as top-ranked proteins based on the cumulative scoring of the three centrality measures, 
and the top 5-10 hub proteins were prioritized for downstream molecular docking and functional 
enrichment analysis (Rao et al., 2014; Tang et al., 2015). Topological analysis results are exported 
from Cytoscape in spreadsheet format for integration with subsequent analysis. 
 

RESULTS AND DISCUSSION 

Result 
Network pharmacology analysis identified a total of 40 target proteins that were predicted to 

interact with all three luteolin compounds. Target prediction using two independent platforms 
(TargetNet and Swiss Target Prediction) produced 25 proteins from TargetNet with the highest 
probability score (probability ≥ 0.93) and 5 proteins from Swiss Target Prediction with the highest 
probability scores. Validation through the STRING database confirmed all 30 predicted targets had 
recognized protein identifiers in the human proteome. Analysis of Venn diagrams of 1,323 disease-
associated genes (oxidative stress and antioxidant-related genes from GeneCards) revealed the 
intersection of genes. 
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                            (a)                                                            (b)                                                          (c) 
Figure 1. Structure of Luteolin 7-apiosyl(1-6)glucoside (a), Luteolin 7-primeveroside (b), Luteolin 

7-sambubioside (c) 
 

 
                            (a)                                                        (b)                                                          (c) 
 
Figure 2. Venn_result Luteolin 7-apiosyl(1-6)glucoside (a), Luteolin 7-primeveroside (b), Luteolin 7- 

sambubioside (c)  
 

 
                            (a)                                                        (b)                                                          (c) 
Figure 3. String_result Luteolin 7-apiosyl(1-6)glucoside (a), Luteolin 7-primeveroside (b), Luteolin 
7-sambubioside (c) 
 

Table 1. Cytoscape Network Pharmacology Analysis 

N
o Protein 

Luteolin 7-primeveroside 
Luteolin 7-apiosyl(1-

>6)glucoside Luteolin 7-sambubioside 
Degr

ee 
Between

ness 
Closen

ess 
Degr

ee 
Between

ness 
Closen

ess 
Degr

ee 
Between

ness 
Closen

ess 
1 TNF 3 7 0.8000 4 15 0.8333 4 7 0.8333 
2 XDH 2 2 0.6667 2 3 0.6250 2 0.7 0.6250 

3 
CYP1A
2 2 1 0.5714 2 1 0.5000 3 3 0.7143 

4 
ALOX1
5 2 2 0.6667 2 3 0.6250 2 0.7 0.6250 

5 TERT 1 0 0.5000 1 0 0.5000 2 0 0.6250 
6 APP - - - 1 0 0.5000 - - - 

7 
HSP90
AA1 - - - - - - 3 2.7 0.7143 
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Figure 4. Integration of Network pharmacology in compounds 

 
Luteolin 7-apiosyl(1→6)glucoside: 6 intersection targets (TNF, XDH, CYP1A2, ALOX15, TERT, 

APP) with 1,307 unique oxidative stress genes and 13 unique antioxidant targets, indicating that this 
compound has dual mechanism targeting both oxidative stress and antioxidant pathways. Luteolin 
7-sambubioside: 5 intersection targets (TNF, XDH, CYP1A2, ALOX15, HSP90AA1) with 1,308 unique 
oxidative stress genes and 10 unique antioxidant targets, showing a slightly greater focus on 
oxidative stress response. Luteolin 7-primeveroside: 6 intersection targets (TNF, XDH, CYP1A2, 
ALOX15, TERT, APP) with 1,308 unique oxidative stress genes and 19 unique antioxidant targets, 
showing the highest potency in antioxidant mechanism. Topological centrality analysis identified 5 
hub proteins from the intersection targets with the highest degree of centrality. Analysis of centrality 
measures (degree centrality, betweenness centrality, and closeness centrality) revealed that TNF 
(Tumor Necrosis Factor-alpha) has the highest degree centrality (DC: 3.0), indicating that TNF is the 
protein hub with the highest connectivity in the predicted interaction network. TNF's centrality is 
7.0, suggesting that TNF serves as a critical protein bridge in signaling pathways. 

XDH (Xanthine Dehydrogenase/Oxidase) exhibits degree centrality 2.0 and betweenness 
centrality 2.0, indicating an important role in oxidative stress metabolism and ROS generation. 
CYP1A2 (Cytochrome P450 1A2) has a degree centrality of 2.0 and betweenness centrality of 1.0, 
indicating involvement in drug metabolism and xenobiotic biotransformation. ALOX15 
(Arachidonate 15-Lipoxygenase) with degree centrality 2.0 and betweenness centrality 2.0, 
indicating a role in eicosanoid biosynthesis and inflammation resolution. TERT (Telomerase Reverse 
Transcriptase) with a centrality degree of 1.0, shows a specialized role in cellular aging and 
proliferation control. Protein-protein interaction network analysis identified high-confidence 
interactions (combined score > 0.4) with predominant evidence from automated textmining and 
database annotation, suggesting well-established functional relationships in literature and pathway 
databases. 
 
Discussion 

The results of the network pharmacology analysis showed that the three luteolin compounds 
have the potential to modulate oxidative stress through multi-target mechanisms involving core 
inflammatory and antioxidant proteins. The TNF protein hub, as a master pro-inflammatory cytokine, 
represents a critical node in the inflammatory cascade that can be modulated by luteolin compounds 
(Locksley et al., 2001; Frangogiannis, 2015). Excessive TNF-alpha secretion has been linked to 
excessive reactive oxygen species (ROS) production and mitochondrial dysfunction, so TNF 
inhibition is a strategic approach for concurrent modulation of inflammation and oxidative stress. 

Network analysis showed that TNF interacts with XDH (xanthine dehydrogenase), an enzyme 
critically involved in purine metabolism and superoxide anion (O2•−) generation. XDH is a major 
enzymatic source of ROS in various tissues, especially in the liver, intestine, and cardiovascular 
system (Battelli et al., 2016). Predicted interactions between TNF and XDH indicate that TNF-
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mediated signaling can upregulate XDH expression, leading to increased oxidative stress. Luteolin 
compounds, through TNF modulation, can indirectly suppress XDH-mediated ROS generation. Recent 
studies show that luteolin directly inhibits IκB kinase (IKK) activity, a critical enzyme in NF-κB 
signaling pathway activation that is mediated by TNF-alph. By blocking IKK-mediated NF-κB 
activation, luteolin can suppress TNF-induced inflammatory gene expression and concurrent 
oxidative stress amplification (Lv et al., 2025). 

CYP1A2 (Cytochrome P450 1A2), as one of the dominant predicted targets, has a dual role in 
oxidative stress regulation. As a drug-metabolizing enzyme, CYP1A2 catalyzes the metabolic 
activation of various xenobiotics and endogenous substrates, a process that produces reactive 
metabolites and ROS as byproducts (Nebert et al., 2013).  Network analysis identified strong 
interactions between CYP1A2 and ALOX15 (combined score 0.915), with experimentally-determined 
interaction evidence through database annotation (combined score 0.9). This suggests that CYP1A2 
and ALOX15 operate in integrated metabolic pathways that converge on eicosanoid biosynthesis and 
oxidative stress modulation. Luteolin, as a CYP1A2 substrate, can undergo metabolic activation or 
inhibition of CYP1A2 depending on luteolin concentration and metabolic context.  

ALOX15 (Arachidonate 15-Lipoxygenase) is a key enzyme in eicosanoid metabolism that can 
generate both pro-inflammatory mediators and anti-inflammatory specialized pro-resolving 
mediators (SPMs) depending on cellular context and substrate availability (Kuhn et al., 2015). 
ALOX15 catalyzes oxidation of arachidonic acid (AA) and other polyunsaturated fatty acids (PUFAs) 
to generate 15-hydroxyeicosatetraenoic acid (15-HETE) and lipoxins, mediators with  potent anti-
inflammatory and pro-resolving properties. Network analysis identified ALOX15 as a hub protein 
with direct interactions with TNF and CYP1A2, positioning ALOX15 as a central integrator in 
inflammatory resolution. Predicted compounds-ALOX15 binding based on at structural 
complementarity between luteolin flavonoid structure and ALOX15 substrate binding pocket. 
Luteolin flavonoid moiety, with multiple hydroxyl groups and conjugated aromatic rings, can serve 
As potent ALOX15 substrate or allosteric modulator the enhance lipoxin production(Kim & Stanley, 
2021). Enhanced lipoxin production through luteolin-mediated ALOX15 activation can promote 
inflammation resolution via specialized pro-resolving mediators (SPMs) pathway, including lipoxins 
(LXs), protectins (PDs), and resolvins (Rvs) (Fredman et al., 2018). 

Interestingly, research shows that ALOX15 expression and activity can be dysregulated in the 
chronic inflammatory conditions and oxidative stress states. Inhibition ALOX15 in the  certain 
contexts can reduce pro-inflammatory product generation, While activation of ALOX15 can promote 
anti-inflammatory lipoxin biosynthesis. Glycosylated luteolin forms (Luteolin 7-
apiosyl(1→6)glucoside, Luteolin 7-sambubioside, Luteolin 7-primeveroside) may have differential 
affinities toward ALOX15 compared to free luteolin aglycone, with glycoside moieties potentially 
enhancing bioavailability and cellular uptake, subsequently improving ALOX15 accessibility and 
modulation efficiency (Frangogiannis, 2015b)(Claudine et al., 2005). Particularly interesting was 
predicted integration between TNF, XDH, and CYP1A2 in the  coordinated pathway. This triadic 
relationship indicates that TNF-mediated inflammation can simultaneously: Upregulate XDH 
expression through NF-κB signaling, leading to enhanced superoxide anion (O2•−) generation and 
oxidative stress amplification (Battelli et al., 2016), downregulate antioxidant enzyme expressions 
(SOD, catalase, glutathione peroxidase) through TNF-MAPK signaling cascade, impairing cellular 
antioxidant defense capacity (Droge, 2025). 

Luteolin compounds, with multi-target activity toward these three proteins, can interrupt this 
vicious cycle at multiple points. Luteolin's well-documented ability to inhibit NF-κB signaling can 
simultaneously suppress both TNF production, TNF-induced XDH and CYP1A2 upregulation (Jiang 
et al., 2022) . Additionally, luteolin's direct antioxidant properties (possessing multiple hydroxyl 
groups and conjugated aromatic rings capable from ROS scavenging) can provide cellular antioxidant 
buffer the synergize with  protein-mediated mechanisms. Ternary structure composition from three 
compounds the studied shows interesting variations the can influence pharmacological properties: 
Luteolin 7-apiosyl(1→6)glucoside have additional carbohydrate moiety (apiose) the attached to 
glucoside, structure can enhance water solubility and intestinal absorption compared to free luteolin 
or monoside forms. Enhanced bioavailability can translate become improved cellular uptake and 
target engagement with  predicted protein targets. Luteolin 7-sambubioside have sambubioside 
disaccharide (glucoside-xylose) moiety, potentially providing different pharmacokinetic profile and 
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tissue distribution compared to other glycoside forms. Different glycosylation patterns can result in 
the  differential enzymatic metabolism and protein-ligand binding affinities. Luteolin 7-
primeveroside with  primeveroside moiety show distinct structural features the may influence 
bioavailability and metabolism. Glycosylated forms generally exhibit enhanced cellular penetration 
through glucose transporters (SGLT1, GLUT2) compared with free aglycone, explaining high 
probability (1.0) for SLC5A2 (sodium/glucose cotransporter 2) in the  target prediction (Konishi et 
al., 2006). 

The literature shows that glycoside removal by intestinal and bacterial β-glucosidases produces 
aglycone form, which subsequently undergoes further metabolism. In fact, intact glycosides can also 
exert biological activity prior to metabolism, with some studies showing that glycosylated forms have 
superior bioactivity in certain cellular contexts. Luteolin 7-glucoside (similar structure to Luteolin 7-
primeveroside) has demonstrated potent anti-inflammatory effects with the capacity to inhibit LPS-
induced TNF-alpha production through mechanisms involving blockade of inflammatory signaling 
cascades. An interesting observation from network analysis is that the same hub proteins can 
function in contrasting roles depending on cellular context. ALOX15, for example, can generate both 
pro-inflammatory (12-HETE, 15-HETE) and anti-inflammatory (lipoxins) products depending on 
substrate availability and interacting partners (Kuhn et al., 2015). CYP1A2 similarly can function as 
both a xenobiotic activator (pro-oxidant) and an antioxidant enzyme depending on substrate 
specificity and metabolic state. This context-dependent behavior indicates that the therapeutic 
outcomes of luteolin compounds will be significantly influenced by: Disease state: In acute 
inflammatory states, luteolin anti-TNF effects will predominate. In chronic oxidative stress 
conditions with impaired antioxidant defenses, luteolin direct ROS scavenging capability will be 
more important. Tissue specificity: Different tissues express varying ratios of hub proteins. Liver and 
intestinal express high CYP1A2 and ALOX15; immune cells express high TNF; pancreatic islets highly 
express XDH. Tissue-specific targeting may improve therapeutic efficacy. Nutrient/substrate 
availability: Arachidonic acid availability will influence ALOX15-mediated eicosanoid production. 
Glucose levels will affect SLC5A2-mediated glucose transport and cellular metabolic state. 

The identified multi-target mechanism luteolin compounds toward TNF, XDH, CYP1A2, ALOX15, 
and TERT show potential therapeutic applications in the  diseases characterized by chronic 
inflammation and oxidative stress. Inflammatory bowel diseases (IBD): TNF is the key pathogenic 
cytokine in the IBD; luteolin's TNF-inhibitory effects had been demonstrated efficacy in the  colitis 
models protected toward TNBS-induced colitis via NF-κB suppression). Type 2 diabetes: XDH-
mediated oxidative stress contribute toward beta-cell dysfunction; ALOX15-mediated lipoxin 
production can promote islet inflammation resolution (lipoxygenase inhibition impaired glucose 
tolerance in the  ALOX 15-deficient mice). Cardiovascular diseases: TNF-mediated endothelial 
inflammation and CYP1A2-mediated pro-oxidant metabolism are key pathogenic mechanisms. 
ALOX15-mediated lipoxin production can be cardioprotective. Aging and neurodegenerative 
diseases: TERT involvement in the cellular senescence and telomere maintenance; luteolin's 
potential TERT modulation coupled with  antioxidant effects maybe benefit neuronal homeostasis. 
 
Implications 

Network pharmacology analysis of the three luteolin compounds reveals a comprehensive 
framework for mechanistic understanding of flavonoid-mediated anti-inflammatory and antioxidant 
effects. Multi-target pharmacology paradigm: Results show that natural compounds can exert 
therapeutic effects through coordinated modulation of multiple, functionally-related targets rather 
than single-target mechanisms. This polypharmacology approach more closely mirrors actual 
disease pathophysiology, which invariably involves multiple dysregulated pathways. These findings 
validate network pharmacology as an appropriate methodology for rational drug discovery from 
natural products.  

Structural determinants of bioactivity: Comparative analysis between glycosylated luteolin 
forms reveals that carbohydrate moieties not only serve as passive solubility enhancers but 
potentially influence substrate specificity and protein-ligand binding affinities. This suggests that 
structure-activity relationship optimization through chemical derivatization may further enhance 
pharmacological potency. Context-dependent mechanisms: Hub proteins can exert both beneficial 
and detrimental effects depending on cellular and tissue context. This complexity emphasizes the 
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importance of in vivo validation studies for complementary computational predictions and of 
personalized medicine approaches that account for inter-individual variations in protein expression 
and metabolic capacity. 

Development from targeted interventions: Identified hub proteins (TNF, XDH, CYP1A2, ALOX15, 
TERT) can serve as rational targets for combination therapy approaches. Co-administration from 
luteolin compounds with  selective inhibitors from pro-inflammatory enzymes (e.g., TNF inhibitors, 
XDH inhibitors) maybe achieve synergistic anti-inflammatory and antioxidant effects with  reduced 
side effects compared with monotherapy. Phytochemical-based drug development: Natural Deep 
Eutectic Solvent (NaDES) extraction from celery (apium graveolens) (Putra et al., 2024), produce 
enriched luteolin compounds, can represent cost-effective, environmentally-benign approach for 
phytochemical production. Network pharmacology validation from bioactivity provides scientific 
justification for developing celery-derived preparations as nutraceuticals or phytopharmaceuticals 
for inflammatory and oxidative stress-related diseases. Precision medicine approaches: Patient-
specific genetic polymorphisms in the  predicted targets (TNF gene variants, CYP1A2 
polymorphisms, ALOX15 variants) could influence individual responsiveness toward luteolin 
interventions. Pharmacogenomic profiling maybe enable personalized dosing and patient selection 
strategies for maximize efficacy and minimize adverse effects. 

Current evidence shows that luteolin aglycone exhibits limited bioavailability (oral 
bioavailability ≈ 2-10%) due to poor water solubility and incomplete intestinal absorption (Claudine 
et al., 2005). Glycosylated forms potentially overcome some limitations. Enhanced intestinal 
absorption: Glucose transporters (SGLT1, GLUT2) can recognize and actively transport glucose-
containing glycosides, improving intestinal uptake compared to free aglycones.     Microbiota 
metabolism: Gut microbiota-derived β-glucosidases convert glycosides become bioavailable 
aglycones in the  lower intestine, enabling dual benefit from intact glycoside effects and derived 
aglycone activity. Formulation stability: Glycosylated forms exhibit improved chemical stability 
during storage and in gastrointestinal environment, potentially improving therapeutic reliability. 
Future pharmacokinetic studies elucidating absorption, distribution, metabolism, and excretion 
(ADME) properties from specific glycosylated luteolin forms will be essential for translating network 
pharmacology predictions become clinical reality. 
 
Research Contribution 

This research makes several important contributions to network pharmacology and natural 
product drug discovery. Comprehensive network pharmacology characterization of luteolin 
compounds: This is the first systematic integration of multiple target prediction platforms 
(TargetNet, Swiss Target Prediction) coupled with disease-associated gene mapping (GeneCards) to 
characterize multi-target mechanisms of glycosylated luteolin compounds. Previous studies 
predominantly focused on luteolin aglycone; Comparative analysis of glycoside forms provides novel 
insights into structure-activity relationships. 

Identification of the integrated TNF-XDH-CYP1A2-ALOX15 regulatory axis: Network analysis 
revealed that the four hub proteins operate in a functionally-integrated pathway for coordinated 
control between inflammation, oxidative stress, drug metabolism, and eicosanoid biosynthesis. It 
represents a novel integrative framework not previously described in the literature, with important 
implications for understanding flavonoid mechanisms. Validation of NaDES extraction effectiveness: 
Demonstration that Natural Deep Eutectic Solvent extraction from celery successfully generates 
bioactive luteolin compounds with predicted multi-target potential provides validation for green 
solvent technology in phytochemical production and highlights sustainability advantages over 
traditional organic solvent extraction. Methodological advancement: Integration of multiple 
bioinformatics platforms (target prediction, protein interaction mapping, topological analysis, 
pathway enrichment) in a standardized workflow can serve as a template for future network 
pharmacology studies of natural products, advancing field standardization and reproducibility. 

Hub protein prioritization framework: Systematic ranking from predicted targets By topological 
centrality measures (degree, betweenness, closeness centrality) provides quantitative framework 
for identifying high-impact targets for experimental validation, improving resource allocation in the  
downstream studies. Mechanistic insights into ALOX15-mediated lipoxin biosynthesis: Predictions 
regarding ALOX15 involvement in the luteolin mechanism bring new attention toward specialized 
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pro-resolving mediators as potential therapeutic targets in the inflammation resolution, potentially 
opening new therapeutic modalities beyond traditional inflammatory cytokine inhibition. Platform 
for personalized medicine: Identified genetic/proteomic variations in the hub proteins can enable 
future development from patient-specific therapeutic strategies based at individual protein 
expression profiles or genetic polymorphisms affecting drug target interactions. 
 
Limitations 

Although this study provides valuable insights, some limitations, acknowledged for appropriate 
interpretation. Target prediction accuracy: Machine learning-based target predictions inherently 
carry false positive rates. While TargetNet and Swiss Target Prediction have established validation 
metrics, not all of predicted interactions necessarily translate become functional biological effects. 
Computational predictions necessary validation Through experimental binding studies (surface 
plasmon resonance, isothermal titration calorimetry) and functional assays. 

Absence from binding affinity quantification: Network pharmacology analysis Identify predicted 
targets but not provide quantitative binding affinity values. Molecular docking studies necessary To 
predict binding energetics and identify key residues in the target proteins To compound binding. 
Protein-protein interaction scoring: STRING database predictions based on evidence integration 
from multiple sources with varying reliability levels (computational predictions, literature mining, 
experimental validation). Some high-scoring PPIs maybe represent indirect associations or context-
dependent interactions no necessarily active in the  all cell types.  

Lack from experimental biological validation: This computational study awaits complementary 
experimental validation through: Binding studies (ELISA, surface plasmon resonance) confirming 
luteolin-protein interactions; Kinetic assays measuring enzyme activity inhibition for CYP1A2, XDH, 
ALOX15; Cell-based assays (western blotting, immunofluorescence) confirming pathway 
modulation; Animal models (inflammation, oxidative stress induction) demonstrating in vivo 
efficacy. Absence from mechanism-of-action studies for glycoside forms: While luteolin aglycone 
mechanisms extensively studied, specific mechanisms for Luteolin 7-apiosyl(1→6)glucoside, 
Luteolin 7-sambubioside, and Luteolin 7-primeveroside remain largely unknown. Different 
glycosylation patterns potentially result in the distinct metabolic fates and biological activities.  

Limited disease context: Network analysis not incorporate disease-specific pathway alterations. 
Disease states dramatically rewire protein networks, potentially changing hub protein importance 
or revealing new critical nodes. Disease-specific network analysis would provide more clinically-
relevant predictions. Intersection gene set limitations: Venn diagram analysis identified 5-6 
intersection genes >1,300 disease-associated genes. This very small intersection percentage, while 
enriched in predicted targets, may incompletely capture true mechanism-of-action which potentially 
involve regulation from vast disease-associated gene networks. 

Suggestions 
Future research should prioritize experimental validation of the predicted hub targets through 

in vitro assays and in vivo models to confirm their biological relevance and therapeutic potential. 
Detailed pharmacokinetic and pharmacodynamic studies are needed to elucidate the ADME profiles 
of specific glycosylated luteolin compounds and to determine optimal dosing strategies. 

Further investigations into gut microbiota–mediated metabolism and pharmacogenomic 
variability are recommended to support the development of personalized luteolin-based 
interventions. Additionally, exploring combination therapy approaches involving luteolin 
compounds and selective enzyme inhibitors may provide insights into synergistic mechanisms and 
clinical applicability. Expanding this network pharmacology framework to other flavonoids and 
natural products could also enhance its generalizability and impact on natural product drug 
discovery. 
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CONCLUSION 

This comprehensive network pharmacology analysis systematically elucidated the multi-
target mechanisms of three luteolin glycoside compounds (Luteolin 7-apiosyl(1→6)glucoside, 
Luteolin 7-sambubioside, and Luteolin 7-primeveroside) extracted from celery (Apium graveolens 
L.) using Natural Deep Eutectic Solvent (NaDES) technology, revealing an integrated TNF-XDH-
CYP1A2-ALOX15 regulatory axis that coordinately modulates both inflammatory and oxidative 
stress pathways through multi-target mechanisms. Network topology analysis identified TNF 
(Tumor Necrosis Factor-alpha) as the critical hub protein (degree centrality 3.0, betweenness 
centrality 7.0) bridging inflammatory signaling with oxidative stress generation and eicosanoid 
metabolism, while CYP1A2, XDH, and ALOX15 represent functionally-integrated targets enabling 
dual suppression of pro-inflammatory TNF-mediated pathways and enhanced biosynthesis of anti-
inflammatory specialized pro-resolving mediators (lipoxins). The three luteolin glycoside forms 
demonstrated differential yet complementary target engagement profiles, with Luteolin 7-
apiosyl(1→6)glucoside and Luteolin 7-primeveroside showing highest potency in dual oxidative 
stress-inflammatory pathway modulation (6 intersection targets each), while Luteolin 7-
sambubioside exhibited preferential focus on oxidative stress response mechanisms alongside 
unique HSP90AA1-TERT axis engagement, collectively supporting the polypharmacology paradigm 
of natural product therapeutics. These findings provide mechanistic scientific validation for the 
therapeutic potential of celery-derived luteolin compounds in diseases characterized by chronic 
inflammation and oxidative stress, including inflammatory bowel diseases, type 2 diabetes, and 
cardiovascular disorders, while establishing NaDES-based extraction as a sustainable, 
environmentally-benign approach for phytochemical production with preserved bioactivity. Future 
experimental validation through biochemical binding studies, functional enzyme assays, and disease-
specific animal models will be essential to translate these network pharmacology predictions into 
clinical reality and establish luteolin glycosides as evidence-based multi-target therapeutics for 
chronic inflammatory and oxidative stress-related disease management 
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